РАСЧЁТ КОЭФФИЦИЕНТА ПРОТИВОРАДИАЦИОННОЙ ЗАЩИТЫ ПО СТЕПЕНИ ОСЛАБЛЕНИЯ ДОЗЫ РАДИАЦИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Исходные данные

Расчёт выполнен на основе технического задания на разработку проектных решений по устройству защитного сооружения на случай чрезвычайных ситуаций. Защитное сооружение представляет собой заглубленное в грунт, отдельно стоящее сооружение прямоугольной формы модульной сборки. Уровень чистого пола убежища расположен на условной отметке — 3900 мм. Внутренняя высота убежища — 2900 мм.

Конструктив убежища состоит из: стальной каркас толщиной 10 мм усиленный изнутри переборками, покрытие специальное повышенной прочности, специальный гидротехнический армированный бетон толщиной 150 мм, покрытие пенополиуретаном толщиной 100 мм. Насыпной грунт над покрытием 1000 мм.

Расчёты

Ограждающие конструкции защитного сооружения должны обеспечивать ослабление радиационного воздействия до допустимого уровня А ≥ 5 000 согласно Технического задания. Расчёт ослабления радиационного воздействия выполнен в соответствии с нормативной документацией РФ: СП 88. 13330.2022 СНиП II-11-77 «Защитные сооружения гражданской обороны»

Таблица - Классификация защитных сооружений по степени ослабления дозы радиации ионизирующих излучений

Класс убежища	Расчётная величина избыточного	Коэффициент ослабления Воздействия
	давления, МПа	Ионизирующих излучений (А)
A - I	0,5	5000
A - II	0,3	3000
A - III	0,2	2000
A - IV	0,1	1000

Степень ослабления радиационного воздействия ограждающими конструкциями определена по формуле

$$A \leq \frac{2K_{vi}}{K_{vi} + K_{\pi i}} K_{\sigma} =$$

Где А: - требуемая степень ослабления ≥ 5000 (класс убежища А- I).

 K_{Yi} — коэффициент ослабления дозы гамма- излучения преградой из і слоёв материала, равный произведению значений K_Y для каждого слоя, принимаемых по СП 88. 13330.2022 СНиП ІІ-11-77 «Защитные сооружения гражданской обороны» K_{Yi} =3,5(бетон 150 мм)* 770(грунт 1000 мм)

 $K_{\pi i}$ — коэффициент ослабления дозы нейтронов преградой из і слоев материала, равный произведению значений K_n для каждого слоя, принимаемых по СП 88. 13330.2022 СНиП ІІ-11-77 «Защитные сооружения гражданской обороны»; $K_{\pi i}$ =12 (бетон 150 мм)* 12 10^4 (грунт 1000 мм)

 $K_{
m p}$ - коэффициент условий расположения убежищ, принимаемый по формуле: $K_{
m P} = rac{K_{
m 3ac}}{K_{
m 2\pi}}$ где:

 $K_{
m sac}$ — коэффициент, учитывающий снижение дозы проникающей радиации в застройке и принимаемый по СП 88. 13330.2022 СНиП II-11-77 «Защитные сооружения гражданской обороны»

 $K_{
m 3ac}$ = 1 (Худший возможный индекс ,так как плотность застройки неизвестна)

 $K_{3д}$ - коэффициент, учитывающий ослабление радиации в жилых и производственных зданиях при расположении в них убежищ и принимаемый по СП 88. 13330.2022 СНиП II-11-77 «Защитные сооружения гражданской обороны»

 $K_{3\pi}$ =1 (Отдельно стоящее убежище)

A=5380

Промежуточный итог 1 – неравенство выполнено, так как 5380≥ 5000

Для заглубленных в грунт с горизонтальными, наклонными тупиковыми или вертикальными входами коэффициент защиты определяется по формуле K_3 = 0,77 $K_{\rm пер}/V_1$ +Х $K_{\rm пер}$, (56) K_3 = 0,77*4500/0,09+0,0225*(1/5000)*4500=19223; где V_1 - коэффициент, зависящий от высоты и ширины помещения и принимаемый по СП 88. 13330.2022 СНиП II-11-77 «Защитные сооружения гражданской обороны». Для промежуточных значений ширины и высоты помещений коэффициент V_1 принимается по интерполяции. Для заглубленных в грунт сооружений высоту помещений следует принимать до верхней отметки обсыпки.

 $K_{\text{пер}}$ - кратность ослабления первичного излучения перекрытием, определяемая по СП 88. 13330.2022 СНиП II-11-77 «Защитные сооружения гражданской обороны» β - часть суммарной дозы радиации, проникающей в помещении через входы, определяется по формуле

$$\beta = K_{hx} \Pi_{90}$$
 (57) = 0,045*0,5 + 0,0225

Проектом выбраны двери, защитные, имеющие сертификат завода изготовителя

$$K_{\rm CT.3} = 5000$$

$$X = \beta/K_{CT.9}$$

 Π_{90} - коэффициент, учитывающий тип и характеристику входа.

 K_{bx} - коэффициент, характеризующий конструктивные особенности входа и его защитные свойства.

Промежуточный итог 2 — неравенство выполнено, так как $19223 \ge 5000$.

Выводы: Проектируемое защитное сооружение по степени ослабления дозы радиации ионизирующих излучений соответствует классу A-I и имеет коэффициент защиты $K_3=19223$. Сооружение соответствует требованиям раздела СП 88. 13330.2022 СНиП II-11-77 «Защитные сооружения гражданской обороны»

Итог — запроектированное сооружение соответствует требованиям раздела СП 88. 13330.2022 СНиП II-11-77 «Защитные сооружения гражданской обороны»